AFIRMA GSC X ATLAS: MOLECULAR ANALYSIS IN FOLLICULAR THYROID NODULES
In the field of indeterminate thyroide nodules are currently available complete and advanced molecular genetic methods. Among these, Afirma, produced by Veracyte, San Francisco (U.S.A.), represents the one able to determine, with higher reliability and before the surgical intervention, if a thy3 indeterminate thyroid nodule is really benign.
Developed in the United States, it spread to other countries (Canada, Israel, United Arab Emirates, Italy). EndocrinologiaOggi is the first center in Italy and perhaps in Europe where it is possible to routinally use Afirma method for the risk stratification of indeterminate thyroid nodules.
Afirma GSC X Atlas has a negative predictive value of 96%. In essence, if a nodule is benign with Afirma it has a probability> 96% to be really benign, and therefore it should not be underdone to surgery but should be considered as a benign nodule of traditional cytology (Thy2).
Afirma is not a simple genetic test but a true test of gene expression as it evaluates the gene expression profiles of a very high number of genes, measuring at the same time the levels of RNA. The diagnostic capacity of Afirma has been further improved over the years with technical implementations that have given rise to: Afirma-GSC (Gene Sequencing Classifier) and Afirma-GSC-XAtlas in which all the genetic alterations found in the sample are listed, with the risk of malignancy associated with them as reported in the scientific literature.
Afirma is undoubtedly the most advanced method currently available worldwide for pre-operative diagnostics of indeterminate thyroid nodules (TIR3). With gene profiling, Afirma is able to biologically stratify the risk of cancer of an indeterminate thyroid nodule and to select patients who are at very low risk (<4%) of having a tumor. It is therefore the most important exclusion test (“rule-out“) currently available. If a nodule is benign by Afirma, malignancy can be practically ruled out and, therefore, the patient can avoid surgery.
To perform Afirma it is necessary to repeat a needle aspiration to obtain new material to be analyzed.
CONCLUSIONS
In conclusion, Afirma GSC and its further implementaion (Afirma GSC X Atlas) represent the most advanced method currently available worldwide for the genomic analysis of indeterminate thyroid nodules (Thy 3a, Thy3f, Bethesda III (AUS/FLUS), Bethesda IV).
Afirma, provides two possible results on indeterminate thyroid nodules: benign or suspicious. Afirma GSC, by reclassifying cytologically indeterminate thyroid nodules as benign, avoids unnecessary thyroid surgery and it is useful in management of cytologically indeterminate thyroid nodules.
Afirma was developed in the United States and, from the first studies, now it is widespread to other countries.
The EndocrinologiaOggi Center in Rome (Italy), is the first center in Europe where Afirma is clinically and routinately used for stratification of indeterminate thyroid nodules. European patients that prefer a closer place to perform Afirma instead of San Francisco (United States), can do it in Rome (Italy) at a lower price (2400 €).
For more information about Afirma GEC, click here.
For more information about Afirma GSC X Atlas, click here.
For an appointment for Afirma GSC X Atlas, you can:
– write an email (info@endocrinologiaoggi.it)
– call (0039 0686391386)
– book on line (click here).
Dr. Massimiliano Andrioli
MD, PhD, Endocrinologist
Centro EndocrinologiaOggi, Roma
viale Somalia 33A, Roma
tel/fax 0686391386
cell 3337831426
Litterature
Alexander EK, Kennedy GC, Baloch ZW et al. Preoperative Diagnosis of Benign Thyroid Nodules with Indeterminate Cytology. N Engl J Med. 2012;367:705-715.
Chudova D, Wilde JI, Wang ET, et al. Molecular Classification of Thyroid Nodules Using High-Dimensionality Genomic Data. J Clin Endocrinol Metab 2010;95:5296-5304.
Walsh S, Wilde JI, Tom E, et al. Analytical performance verification of a molecular diagnostic for cytology-indeterminate thyroid nodules. J Clin Endocrinol Metab 2012;97:2297-2306.
Alexander EK, Schorr, M, Klopper J et al. Multi-center clinical experience with the Afirma Gene Expression Classifier. J Clin Endocrinol Metab. 2014;99(1):119-25.
Duick DS, Klopper JP, Diggans JC, et al. The Impact of Benign Gene Expression Classifier Test Results on the Endocrinologist-Patient Decision to Operate on Patients with Thyroid Nodules with Indeterminate FNA Cytopathology, Thyroid. 2012;22(10):996-1001.
Lastra RR, et al. Implications of a suspicious Afirma test result in thyroid fine-needle aspiration cytology: an institutional experience. Cancer Cytopathol. 2014;122(10):737-44.
McIver B, et al. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99(11):4069-77.
Harrell RM, Bimston DN. Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract. 2014;20(4)364-9.
Sullivan PS, et al. The impact of atypia/follicular lesion of undetermined significance and repeat fine-needle aspiration: 5 years before and after implementation of the Bethesda System. Cancer Cytopathol 2014;122(12):866-72.
Marti JL, et al. Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules. Ann Surg Oncol 2015;22(12):3996-4001.
Brauner E, et al. Performance of the Afirma gene expression classifier in Hurthle Cell thyroid nodules differs from other indeterminate thyroid nodules. Thyroid. 2015;(7):789-96.
Angell TE, et al. Afirma benign thyroid nodules show similar growth to cytologically benign nodules during follow-up. J Clin Endocrinol Metab. 2015;100(11):E1477-83.
Witt RL. Outcome of thyroid gene expression classifier testing in clinical practice. Laryngoscope. 2016 Feb;126(2):524:7.
Celik B, et al. Afirma GEC and Thyroid Lesions: An Institutional Experience. Diagn Cytopathol 2015 Dec;43(12):966-70.
Yang SE, et al. Has Afirma Gene Expression Classifier Test Refined the Indeterminate Thyroid Category in Cytology? Cancer Cytopathol. 2016 Feb;124(2):100-9.
Zhu QL, et al. Relationship between sonographic characteristics and Afirma Gene Expression Classifier results in thyroid nodules with indeterminate fine-needle aspiration cytology. Am J Roentgenol 2015, October; 205(4):861-5.
Wu JX, et al. Effect of malignancy rates of cost-effectiveness of routine gene expression classifier testing for indeterminate thyroid nodules. Surgery. 2016 Jan;159(1):118-29.
Sipos JA, Blevins TC, Shea HC, et al. Long-Term Non-Operative Rate of Thyroid Nodules with Benign Results on the Afirma Gene Expression Classifier. Endocrine Practice. 2016, Jan 20. (Epub ahead of print)
Ward LS, Kloos RT. Molecular markers in the diagnosis of thyroid nodules. Arq Bras Endocrinol Metabol. 2013 Mar;57(2):89-97.
Ali SZ, Fish SA, Lanman R, Randolph GW, Sosa JA. Use of the Afirma® Gene Expression Classifier for Preoperative Identification of Benign Thyroid Nodules with Indeterminate Fine Needle Aspiration Cytopathology. PLOS Currents Evidence on Genomic Tests. 2013;5:1-7.
Mingzhao X, Haugen BR, Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. The Lancet 2013;381(9871)1058-69.
Kim M, Alexander A. Diagnostic Use Of Molecular Markers In the Evaluation of Thyroid Nodules. Endocrine Practice 2012;18:796-802.
Melillo R, Santoro, M. Molecular Biomarkers in Thyroid FNA Samples. J Clin Endocrinol Metab. 2012; 97(12):43704737.
Duick D. Overview of Molecular Biomarkers for Enhancing The Management of Cytologically Indeterminate Thyroid Nodules and Thyroid Cancer. Endocrine Practice 2012;18:611-615.
Li H, Robinson KA, Anton B, Sadhanha IJ, Ladenson PW. Cost-Effectiveness of a Novel Molecular Test for Cytologically Indeterminate Thyroid Nodules. J Clin Endocrinol Metab 2011;96(11):E1719-E1726.
Mitchell I, Livingston EH, Change AY, et al. Trends in thyroid cancer demographics and surgical therapy in the U.S. Surgery 2007;142:823-828.
Shrime MG, Goldstein DP, Seaberg RM, et al. Cost effective management of low-risk papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg 2007;133:1245-1253.
Esnaola NF, Cantor SB, Sherman SI, Lee JE, Evans DB. Optimal treatment strategy in patients with papillary thyroid cancer: a decision analysis. Surgery 2001;130:921-930.
Cibas ES, Baloch ZW, Fellegara G, et al. A Prospective Assessment Defining the Limitations of Thyroid Nodule Pathologic Evaluation. Ann Intern Med. 2013;159:325-332.
Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis. Acta Cytol. 2012;56(4):333-339.
Wang C, Friedman L, Kennedy GC, et al. A Large Multicenter Correlation Study of Thyroid Nodule Cytopathology and Histopathology. Thyroid 2011;21(3):243-251.
VanderLaan PA, Marqusee E, Krane JF. Clinical outcome for atypia of undetermined significance in thyroid fine-needle aspirations: should repeated fna be the preferred initial approach? Am J Clin Pathol. 2011 May;135(5):770-775.
Lewis CM, Chang K-P, Pitman M, Faquin WC, Randolph GW. Thyroid Fine-Needle Aspiration Biopsy: Variability in Reporting. Thyroid 2009;19(7):717-723.
Cibas ES, Syed AZ. NCI Thyroid FNA State of the Science Conference. The Bethesda System For Reporting Thyroid Cytopathology. Am J Clin Pathol. 2009;132:658–665.
Baloch ZW, Cibas ES, Clark DP, et al. The National Cancer Institute Thyroid fine needle aspiration state of thescience conference: a summation. CytoJournal. 2008;5:6:425–437.
Berner A, Sigstad E, Pradhan M, Grøholt KK, Davidson B. Fine-needle aspiration cytology of the thyroid gland: comparative analysis of experience at three hospitals. DiagnCytopathol 2006;34:97–100.
Yeh MW, Demircan O, Ituarte P, Clark OH. False-negative fine-needle aspiration cytology results delay treatment and adversely affect outcome in patients with thyroid carcinoma. Thyroid 2004;14:207–215.
Renshaw A. An estimate of risk of malignancy for a benign diagnosis in thyroid fine-needle aspirates. Cancer Cytopathol. 2010;118(4):190-195.
Elsheikh TM, Asa SL, Chan JK , et al. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clinical Pathol 2008;130(5):736–744.
Lloyd RV, Erickson LA, Casey MB, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 2004;28:1336–1340.Hirokawa M, Carney JA, Goellner J R, et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol 2002;26:1508–1514.
Nasr E, Andrioli M, Angell T et al. Real World Performance of The Afirma Genomic Sequencing Classifier (GSC) – A Meta-analysis. J Clin Endocrinol Metab 2022 Dec 6;dgac688. doi: 10.1210/clinem/dgac688.
GEN
2019